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CALCULATION OF ELECTROMAGNETIC OBSERVABLES IN FEW-BODY SYSTEMS

B.F. Gibson
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Parkville Victoria 3052
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and

Theoretical Division*
Los Alamos National Laboratory
Los Alamos, New Mexico, 87545
UIS.A.

An introduction to the calculation of electrcmagnetic observables in
few-body systems is given by studying two examples in the trinucleon
system: 1) the elastic electron scattering charge form factor in con-
figuration space and momentum space and 2) the two-body photodisinte-
gration of 3H leading to a neutron-deuteron final state in a separable
potential formalism. 1In the discussion of charge form factor calcula-

tions, a number of related topics are touched upon: the relation of
structure in ¥ to the properties of simple NN forces, the Faddeev and
Schrodinger solution to the harmonic oscillator problem, the

Rosenbluth formula for electron scattering from a spin-1/2 nuclear
target (e.g., the proton or 3He), and the charge density operator.
Formulae for ?He and }H charge form factors 1In a central force
approximation are given In configuration and momentum space. The
phvsics of these form factors Is discussed in light of results from
realistic nucleon-nucleon potencial model calculations, including the
effects of two-pion-exchange three-body force models. Topics covered
arve the rms charge radii, characterization of the charge form factors,
properties of the charge densities, and the Coulomb energv of IHe.

In the discussion of the 3H photodisintegration, the Siegert form of
the electric dipole operator (in the long wave length Llimit) s
derived as are the secparable potential equatfons which describhe the
off-shell transition amplitudes which connect nucleon-plus-corrected-
pair states. Expressions for the Born amplitudes required to complete
the two-body photodisintegration amplitude calculation are given.
Numerical results for a model central force problem are dlscussed and
compared with an approximate calculation. Comparisons with JH(y,n)d

and 3He(y,p)d data are made, and the significant feaures of the exact
theoretical calculation are outlined.

*Permanent addreas



LECTURE I. TRINUCLEON FORM FACTORS FROM ELASTIC ELECTRON SCATTERING
I. Introduction

Now that we have learned how to generate few-body wave functions
in numerous ways, let us explore how one relates these ideas to the
phvsical world of experimental observables. Most of us approach the
everyday world around us bhy means of five senses. Of these, one ot
the most important is sight. How do we see? Photons from a source
(natural or artificial) are scattered from objects and detected by our
eves. Experience has taught our super computer brains how to process
the electronic sienals generated by the optic nerve into meaningful
images. Photon scattering is one of our oldest analytical =ools.

Photon scattering is not the only such process that provides us
with meaningful information about the world around us. Each ot you is
familiar with the story ot Rutherford scattering and the discovery of
the nucleus. In that case, alpha particle scattering revealed that
the atom was not a uniform charge distribution. That example contains
an important lesson: new physics is discovered when experimental ob-
servation differs from the result of a model calculatioun that is as
complete as possible in terms of the «nown, relevant physics - not
when undetermined parameters are varied (or chosen) to put a curve
through the data. The pupose of calculations performed within the
context of an exact theory is to explain honest differences with
otherwise successtful approximite theoretical prescriptions and to
elucidate or discover novel aspacts of phvysics.

The simplest picture ot the nucleus is obtained in much the same
manner as we use light to see, although we employ the '"virtual photon"
exchanged between an electron and the nucleus in the electron scatter-
ing process to define our imiage. Using elastic electron scattering,
one can explore the charge anl! magnetic moment densities ot the
nucleus. The relativistic theorv was first written down in the earlv
1930's by Mott.! The fact tha= nuclear charge distributions and sizes
could be extracted from such experiments was lald out clearly by Rose?
in the late 1940's. It was In the 1950's that elastic electron
scattering hecame a feasiblc experimental tool3 and Hofstadter won rhe
Nobel Prize {n 1961 for his work {r electron scattering investigations

of the structure of the nucleus. [t {3 from this background that we
ask such questions as whether we cun provide a quantitative model ot
the c¢harge and magnetic moment distributions ot the tew-nucleon
svstems - those nuclef whose wave tunctions we can generate trom

nonrelativistic Hamiltonians incorporating reallstic representations
of the nucleon-nucleon interaction.



IT1. Qualitative Aspects of the Relation between ¥ and V

Because one 1is investigating a density or {wlz function 1in
studying the differential cross section measured in wunpolarized
elastic electron scattering, the historical approach to analysis of
the data has been to postulate a plausible analytic form for the
dansity and to ask how well the data can be described by varying the
model parameters. Such a prccedure should be utilized with caution,
because it is ciear from the Schrtdinger equation

[T+ V] ¢y = EvV QD)

that important features ot the nucleon-nucleon interaction will be
reflected in the wave function ¥ and therefore in the density lw‘z.
Assuming a given form for ¥ makes a definite statement about the
underlying Hamiltonian which has been implicitly assumed.

Let us examine the spatially symmetric S-state components that
result from using three different central potential forms to generate
the trinucleon wave function: smooth Gaussian (G), one term Yukawa
(MT IV model of Malfliet and Tion“), and a two term Yukawa with short-
range repulsion (MT V model of Malfliet and Tjon“). Figure 1 deplicts
the Schrddinger wave function for the G model where X aad § are the
Jacobhi coordinates of the *H system and 6 is the angle between the two
vectors.> (See Appendix A.) As expected, ¥ tor this smooth potential
shows no sharp structure. This wave function is reminiscent of that
which results ftrom solving the harmonic oscillator (HO) Hamiltontian,
However, it differs in that the wave function falls oftf exponen-
tially. (We shall return to the HO problem below.) The point to
retain is that a smooth ad hoc wave function assumption implies an
assumption that the wunderlying two-body potential 1is reasonably
smooth. This point is emphasized by comparing Fig.l with Fig.2, in
which we plot ¥ for the MI' [V potential model.? The ¥ for the Yukawa
potential exhibits a definite kink, or ridege structure, due to the 1/x
singualrity of the Yukawa form. When y = x/2, one pair of interacting
nucleons lLie close togethe-~ and the 1/x singnlarity leads to a discon-
tinufity in the first derivative of ¥ along that line. This occurs
tor 8=0, a collinear configuration, but not tor 8=90Y, an {sosceles
triangle configuration, in which overlappine pairs cannot occur tor
x*)ay, The ridge structure is even more apparent {in the small S'-
state components of ¥, when the singlet and triplet potentials
ditffer, as shown {in FKig.3, where one of the $'-gtate c¢omponents {s
plotted for the MT II-IV model. Thus, even a purely attractive



pctential having a simple Yukawa singularity leads to structure in the
Schrodinger wave function.

Let us turn to the MT V model with short-range repulsion, whose
wave function |is plotted5 in Fig.4. One anticipates that ¥ will be
small whenever any two of the nucleons are close together. Clearly
this has led to the "death valley"” in ¥ along y = x/2 and along x=0.

o2

)

Fig.1 The Schrddinger wave Fig.2 The Schrddinger wave
function at fixed angle 8=00 function at fixed angle 8=00
for the Gaussian potential model. for the Yukawa potential (MT IV).

Fig.3 'The Schrbdinger wave Fig.4 The Schrbdinger wave
function component /7 of the u'- funcrion at fixed angle 90V tor
state at fixed angle 0=00 for the MT V potential model.

the MT I[-IV potential model.



The two peaks 1in Y correspond to configurations in which the cthree
nucleons are separated by about 1 fm, the distance at which the MI' V
potential attains its greatest depth (maximum attraction). For 8=c(Q0
(not shown) these two peaks merge Iinto one corresponding to an
equilateral +riangle configuration with internucleon separations of
about 1 fm. Note that ¥ for the MT V model 1is suppressed near the
origin, in contrast to ¥ for purely attractive potentials which has a
maximum at the origin. In the neighborhood of x=y=0, all cthree
particles are close together and the short-range repulsion of the
potential has its maximum effect.

We have seen that as the potential model becomes more sophisti-
cated, the complexity of the corresponding trinucleon wave function
increases. Yukawa forms introduce kinks or ridges. Short-range
repulsion produces peaks and valleys as the nucleons localize at
positions corresponding to maximum attraction in the potential. It is
also clear that simple (smooth) ad hoc model wave function hypotheses
imply hidden assumptions about the smoothness (lack of repulsion) of
the underlying potentials. "Forewarned is forearmed".

These effects 1in ¥ are reflected {In calculated observables;
e.g., the electron scattering cross sections. To 1illustrate this
point, we show in Fig.5 Born approximation model results for scatter-
ing off gold using charge distributions of the uniform [p(r) = Py
r < rol and exponential [p(r) = °o e-r/a] forms.3:6 As the surface of
the distribution becomes sharper, nodes develop; the spacing of the
zeros s determined effectively by the size of the svystem. Note that
a Gaussian charge distribution leads to a straight line on such a
plot. As we shall see later, the trinucleon data (and alpha particle
data as well) do not support the choice of such a simple, smooth model
wave function.

Because I have emphasized structure and because we have heard so
much of calculating Faddeev amplitudes, let us retnrn to the harmonic
oscillator model to ensure that the distinction between Schrbtdinger
wave function and Faddeev amplitude 1s clear. It is the structure in
the former that influences calculated observables. Structure in the
latter may have absolutely no effect upon the observables.

Fach of vyou 1is familiar with the Schrodinger wave function
solution to the nonrelativistic harmonic oscillator problem for three
spinless par.icles: (here we redefine y to be /J/2 )

(6 o+ g (82 2 02) 00 = B2k + §2)y . (20)



Fig.5 Cross section angular
distributions for electron
scattering from gold for a
uniform charge distribution
(solid line) an exponential
charge distrihution (dashed
line) and a Gaussian charge
distribution (dotted line).

dcr/d.n. ( mb/sr )

The three-~body solution 1is easily verified to be the familiar Gaus-
sian function
-8 (%2 P2y
v = 3B+ YN 2 (2b)
where E = 28N/M. (See Fig.6) One can generate this solution by sol-
ving the corresponding Faddeev equation’
V(%2 2 - - 282 :
(E +q (Vx + vy)1¢ vV oy T X2 ¥ (3a)
for the Faddeev amplitude y(X,¥) and then constructing the Schrodinger

wave function from

¥(X,y) = w(x,y) + v(% x+y, - é % - % )

»

+w(-~'z§-y.- i--‘ziv). (3b)

MNe

'1!1"'1‘2*‘\!'3.

This has heen done, bhut one can also ohtain a solution for ¢ Lf, as in
this case, ¥ s already known by solving the equation

[28N + %2 + V;lv - 282 y2 o~ B(RZ+VHy/2 (4a)



The solution 18 of the form

) 2 +2-02 —_
o-802/2 ELEN—F—l LA Jy, (/ZN8 p)

20 + N+1
N+2 _-t2/,
+on ¥ (VINE o) [0de eV emtT/2 g (/2E )
- P N+2 _-t2/2
w JN+](/ZEF o) fo dt ¢ e Yoy (72NE €)1, (4b)

where p? = X2 + ¥2 and A Ls an arbitrary constant. Obviously one has
+ £, = 0 (5)
hecause of the (x2-y2) factor in €, ;s 1l.e., it does not contribute

to ¥ in anyway. The £ component of ¢ results because the operator in
the Faddeev equaticn Eq.(3a) is not L2. Nonetheless, it illustrates

1 / 3
5 X
3, ‘a
i 3
! ’
. 1 ¢ » = *=z [
m‘:' -z -< .-=; ‘d ". 32 ez r
oo zaes ' SIIIIEIs:
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Fig.6 The Schrddinger wave Flg.’ The Faddeev amplitude
tunction tor the three-body without the arbitrary component
harmonic oscillator problem. (A=0) for the three-bodvy harmon-

lc oscillator problem.

the poirnt that structure in the Faddeev amplitudes (see Fig.7) may
cancel in the sums needed to generate the Schrodinger wave function.
(The arhitrary component of ¢y has heen removed by setting A = 0.)

Compare Figures 6 and 7. In particular, the ground-state wave func-
tion tor the A=3 system must be positive definite, but the Faddeev
amplitude for a potential with strong short-range repulsion will not
be positive detinite.2'8 [t is the cancellation between positive and



negative parts of the Faddeev amplitudes in Eq.(3b) that leads to the
deep valley seen in Fig.4, Thus, one must he careful about trying to
reach conclusions concerning experimental observables based on an
examination of the Faddeev amplitudes for a given model. It is the
full Schrddinger wave function that defines the features of the
ohservahles.

III. Summary of Elastic Electron Scattering Formulae

Because a complete treatment of electron-proton scattering would
require an hour unto itself and anything less would leave you wonder-
ing about the slight-of-hand performance, I refer you to the hook by
Biorken and Drell? if the subject is not already familiar. I will
quote here only the salient points and remark that they are not the
subject of this lecture.

Consider the diagram shown in Fig.8 which depicts lowest order
(single photon exchange) sgcattering of an electron from a proton. The
electron with 4-momentum k¥ = (e,k) scatters into the final state
4-momentum k'Y = (¢',k'), while the proton recoils trom initial state
with &4-momentum P = (E.B) to the final state with P'" = (E'.ﬁ'). A
virtual photon with 4-momentum transfer q"-k"-k'"-?'"-?“=(w.a) is
exchanged in the process. We note that q2 (= q, q") = w? - § < 0,
which is space-like. Hence, electron scattering is restricted to the
kinematic region for which @2 » w2. Figure 1 describes only the
exchange of a single photon, but because higher order diagrams involve
higher powers of the fine structure constant a(= 1/137), the lowest
order diagram should account for most of the scattering amplitude.
The differential cross section for scattering an electron from a
physical proton is

x2q2

dao 2 2 ]
aw = oy (F} - Zﬁz_ F - EzLM_z_ (Fy + «pFy)° tan? 7] , (6)
where
)
a Q08 '
o " | Z |2 (7)
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Fig.8. Lowest order diagram for
electron scattering from a proton.

is the Mott cross section which describes the scattering from a point
charge in the absence of any internal structure of the proton.
Equation (6) 1is the famous Rosenbluth formula. This is the
relativistic analog of the famous Rutherford cross section (with the
charge of the nucleus set to 1). The F; and Fy are structure
functions associated with the charge and magnetic moment densities of
the proton due to such vertex corrections as depicted in Fig.9a and
9b, and x is the anomalous magnetic moment (:p = 1,79 while Kn =
-1.91). We note that the Dirac and Paull structure form fartors F,
and F, can be separated experimentally by measuring the cross section
as a function of @ while holding the momentum transfer q constant.
The combinations of the form factors given by

(8a)
G = F +|<F2 (8b)

have a more direct geometrical interpretation, and one usually finds
Eq.(6) rewritten as

do OM 2 5 , 2
- { 6% - 32— G2 (1 + 2 tanz = {1 - 3—=)) } . (9)
T g2 am2) B e M b LM

These are the nucleon form factors that we have used in our 3H and
3He form factor studies. Numerical values were taken from the 8.2 fit
of Hbhler et al.‘o

The charge form factor F(q2) is proportional to a matrix element
of the form’

M~ [ d¥p, u(Be) uliy) (10a)

where 5, and p. are related by p, = §, - 4. 7hus, the form factor
L £ £ " Pt
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Fig. 9 Electromagnetic vertex corrections for the proton

structure function is a folding of the momentum space wave functions
at the interaction vertex:

M~ d3p u(p - q) u(p) . (10b)

For calculations utilizing configuration space wave functions, it is
more convenient to work with the Fourier transform of this expression:

>+

M~ [ dir e*q°F w2(). (10c)

The u2(f) can be identified with the charge density in the impulse
approximation when one discusses nuclear systems.

The result for elastic electron scattering from the crinuclgons
is exactly that given by Eq.(9), because the nuclei have J" = % .
The formula for scattering from “He is even simpler, because that
spin-0 object has no magnetic moment. Thus one need only set Gﬁ = 0.
Tha deuteron, being a spin-1 object, is more complex; there exists an
electric quadrupole density in addition to a monopole charge density,
as was pointed out by Schiff!! and others.3 Because of the increased
complexity of the formulae for the spin-1 system, they will be left as
a literature search exercise for those interested.

Restricting our attention to the trinucleons, we would like to
determine four form factors: a charge and a magnetic moment form
factor for each of ¥H and 3He. To orient ourselves, let us consider
the case in which we assume that the nucleon-nucleon force is purely
central. (With no tensor force, there are no D-atate components in
the A=3 wave function.) We will also neglect differences between
IHe and *H due to the Coulomb force acting between the two protons imu
IHe. In this model, the trinucleon wave function has two components



(see Appendix B for a discussion of the spin, 1isospin, and spatial
structure of these states.): the spatially symmetric S-state and the
mixed-symmetry S'-gtate.!2 If one has solved the Faddeev amplitude
equations in terms of spin-singlet and spin-triplet amplitudes ¢(5)
and v(t), then the S and S' Faddeev amplitudes are given bv‘"5

o = v Bz, (ila)
AN V2% 3 (11b)

(s) (t) S -
Because v and ¢ have opposite signs, v is the dominant
amplitude. [If the nucleon interaction were spin independent
(v(8) = v(®)y, then y3 : 0.] The symmetrized combination ot S-state

amplitudes which Jefine the S-state component ot the Schrddinger wave
function is then

- S S .
u W‘ + WZ + W-j . (lza)

The S'-state amplitude combinations are

1 ' Sv ' .
v - — [y + ¥ - 2 %Y ], (12h)
- 1 ' - S' !

/2

The Schrbdinger wave function tor 3He ¢ = u¢a + (v2¢] - Vl°z)
can then be used to evaluate matrix elements of the charge densitv

operator, which we give here in impulse approximation:

o = 12! [g (1 + 1,0 0B (2-2)) |

(13)
(1 =10 ol (t-T ) 1.
] c L

The T, Are the unit isospin operator.: that act on the n's in the

¢'s, as defined in Appendix B. We limit our consideration to the

nonrelativistic, impulse approximation form of the charge density

operator for reasons outlined in Anpendix C. It suffices to note here

that exchange current contributions to the charge operator are

essent'ally relativistic corrections and they are ambipuous.'? Such

i{s not rhe case tor the lsovector exchange current contributions to

the mapnetic moment density, but time 1limitatfon prevents us trom

considering that prohlem here.

Because JHe has a charge of 2, we write its torm tactor as



2 F (JHe) = (v |eiq'% p.| ¥ > (14)
c c

and evaluate Eq.(13) using the wave function Y defined in terms of the
u and v functions of Eqs. (11 and 12). By changing variables from T
to ?-Ei , one can facter the nucleon form factors GP and G" from the
expression. The expectation values of the T, operators are easily
evaluated leading to the simple relation'2,14

2Fc(3He) = (26P + GgM) Fy - 2(GP - ¢M) F, . (19)

where we have detined the bodv form factors F, and F, to be

i43.9

F, = [[dix dly e (w2 (k,9) + v3(k,9) + v3(k, V)| (16a)

and
2+ »
iaq.y
F. o= -[[dix dly e 3

2 u(x,y) v‘(§,§) . (16b)

Using the corresponding wave function for }H, we obtain in that case
FLOW = (6P + 26") Fy + 2(GP - 6™ F, (17)

We have made several simplifying assumptions to obtain these

expressions. Because the S' state 1Is only a ftew % of the
normalization, let us drop the vi{ + v terms in ¥, . (Note that at

q=0, Fy vanishes hecause u is svmmetric in x and v; s ancisymmetric
in Xx; thus the expressions 1in Eqs (14 and 16) have the proper

normalizations.) Similarly, the neurron charge torm factor is small,
and we shall neglect {t. Then we find

F,OHe) = GP(F, - F (18a)’

2)

Bl\d
3 - ,p y L]

flecause F, {3 detined Ln such a wavy as to he positive, we have

F.(He) ¢ F.OH) for small q7 which {mplies that the radius ot lHe
must he gpreanter than that for ’H.’“ We shall discuss the phvsics ot
this later, but tor the moment we emphasize that it has nothing to do
with Coulomb repulsion in 'He. There are no Coulomb ettects {n the



present analysis.
The expressions for F; and F; that correspond to Eq.(18) are
explicictly
. 2e »
inq.Vv
Fo(a) = [[ddx dly e S u2(k,$) (198)

and

120 *
39y . - ,
F,(q?) = -[[d'x dy e u(k,¥) v (%,9) , (19b)

it cerms of configuration space wave functions. In momentum space,
they are

Fi(q?) = [[d3k a¥p u(®,p) u(k.p - 5@ (20a)
and
F,(Q) = -[[d3% a¥B u(k.B) v (kD - $ & . (20b)

These latter momentum space expressions were tirst used to actually
calculate IH ard 3He charge and magnetic moment form factors ftor
realistic nucleon-nucleon force wave functions solutions ot the

Faddeev equattons.15

v, Physics of the Trinucleon Form Factors

The form factor is a function of q2 and not q even though the
exponential argument in Eqs.(16) and (19) is linear in §. 0dd powers
vanish 1n the transform bhecause of v.. isotropic dependence ot rhe
charge density upon the direction ot the external vector 4. For a
general densirtv o(r)/4w, one obtains

F = %T [ d¥r o(r) el&.r (21a)

- ]: dr rZp(r) J _(qr) (21h)

which i{s clearlvy even in powers ot q. Expanding Eq.(21b) tor small
values of q, one ohtains the usual expansion of rthe form tacror in

tarms ot rhe rms radlus <ri> ot the system:

Feq?) = 1 - ¢ <r?> q? (22



where

(r?> = ['o'dr tp(r) (23)
and

1 = J' dr r2p(r) . (24)

It is clear from Eq.(22) that the larger the size of the system, the
faster the form factor falls away from F(q2=0) = 1.

Let us apply this result to an analysis of the trinucleons.
Martino recently reported values for the rms radii of 3He and 3H of
1.93(3) fm and 1.81(S) fm respectivelv.16 The 3He charge density has
a radius some 6% larger than that of 3H. If all the nucleon-nucleon
forces were equal, the two radil would be the same. (See Fig.10a.)
They are not. The neutron-proton spin-triplet force is stronger,
binding the deufteron, whereas the neutron-proton singlet force, the
proton-proton force, and tiie neutron-neutron force all lead to just
unbound singlet states. The charge in JHe is carried by the like pair
of nucleons; the charge in 3H is carried by the odd nucleon. ‘This is
illustrated in Figs. 10b and 10c. Because the spin-triplet and spin-
singlet forces are not equivalent, the like palr of nucleons is dis-
tributed differently from the odd nucleon. In particular, the inter-
action hetween like nucleons is weaker than the average neutron-proton
Interaction, such that the like nucleons lie tarther trom the centre-
of-mass than does the odd nucleon - the like nucleon pair distri-
bution is more extended in space.!Z,17 Because the charge radius is
the average distance between the protons and the centre-ot-mass, the
JHe charge radius is greater than the 'H charge radius. This mani-
fests itself In the wave function through the appearance of the §'-
state wave function component. This S'-gstate of mixed spatial symme-
try is a spin(isospin)-space correlation. [t 1is responsihle for
introducing the F, body torm tactor in Eqs.(15),(17), and (18). It
breaks the isoscalar symmetry in the trinucleon charge form factors,
{ntroducing an isovector component. Please understand that the diff-
erence hetween FC(JHe) and Fc(3H) discussed here has abhsolutely no-
thing to do with Coulomb repulsion between the two protons in 'He. It
arises strictly from the spin dependence of the nucleon-nucleon force.

How do Faddeev calculations ot the trinucleon wave tunctions
fare with reapect to the measured radii? The answer to the question
l9 not simple, because the radius is sensitive to the outer parts ot



Fig. 10 Schematic
model of 3He with

(a) with identical
forces hetween pro-
tons (shaded) and
neutrons in (a).

3He and 3H are shown
in (b) and (¢) when
the mn and pp forces
are weaker than the
average np force.

R. 1s the "charge
rgdtus".

the wave function which are in turn sensitive to the binding energy Eg
of the system. (The bhinding energy depends upon the force model
selected and the numher of channels included in the calculation.) The
asvmptotic form of the S-state wave tunction component is proportional
to exp(-up)/pSIZ where x = (m EBJQ and p 1s the usual hyperspherical
coordinate (p? + x2 + y2), It one assumes that this form is valid
over all space, then one obtains!’

1 1
<e2> 2w 1/(2¢) - by R, (25)

Thia is the binding energy dependence of the isoscalar or mass ridius
ot the Fy hody form tactor. In Fig.11 are shown the results trom many
calculations of the Los Alamos-lova Faddeev group. The symbols reter
only to the number of channels and do not Indicate whether a two-hody
or a two-body plus three-body potential model was used. The scaling
behavior is clear, although ftor the He and JH charge denaities it is
more nearly Ei' than the Ei‘ﬂ which holds For the imosclar radius.'’
((learly, a model which produces the correct binding energy ftor the
trinucleons will give essentially the correct radif.

How do Faddeev calculations tare tor the full torm tactors,
which test more than the asymptotic properties of ¥? FExcept tor the
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verv-low-q2 region, wnich is determined essentially by thte rms radius
ot the svstem, the charge form factor tor each of 3He and *H is deter-
mined hy three numbers in che traditional nuclear phvsics rerime

(q2 < W Em'z). 20 thege are the positions of the ftirst dittraction
minimum and the secondary diffraction maximum and the value ot the
torm factor at that latter value of q?. The most recent Saclay Flesd!
to the world's trinucleon form factor .Jata are chavacterized by

’HE: qlznln = 1‘-0 i ‘)l7 t.m-z

-2
2 "

Flqde,) = - (5.9 # 0.3) » 1077

M a2, = 12.6 & 0.5 fm™¢

. -?
2 . . . A
qmﬂx 17.25 fm

Fla2, ) = - (3.95 & 0.6) = 1077,



For compariso.u, resulrts from Ref.’20 for these quantities in the
case of 'H are shown 1in Figs. 12-14, Nucleon form factors are
included. These observables are plotted versus the corresponding
binding energy for each model. The triangles, x's, circles, arnd
inverted triangles correspond to the Reid sott core (RSC),22 Argonne
Vig (AV15),23 gsuper soft core (C) (SSCC),2% and de Tourreil-Rouben-
Sprung (B) (TRSB)4? two-body potential models, respectively. Two-
plon-exchange three-nucleon forces [Tucson-Melhourne (TM),26 Brazilian
(BR),%7 and Urbana-Argonne (UA)28| were added only to the RSC and AV14
models. All points with Eg > 7.7 MeV contain a three-body force. In
each figure there is a band trending upward with increasing binding
enereyv. [Points with small Eg which lie tar off the band correspond
primarily to three-channel calculations; they have severely truncated
tensor forces and cannot be said to he particularly realistic.| In
rach case the AV14 model tends to produce larger values of qéin or
q;ax than the RSC model, and smaller values of |F(qéax)|. A plot for
the position of the first diffraction minima in 3He is shown in Fig.15
for comparison. The results of these impulse approximation calcula-
tions may be summarized as follows: our mirima and maxima are at too
large a value of q? while the values of the maxima are too small,
compared with experiment.

This is deplcted most clearly in Figs.l16 and 1/, which compere
our RSC 34-channel form factor curves corresponding to three dit-
ferent three-body force models with the experimental data.4!.29-32
The various three-body forces increase the magnitude of the form fac-
tor in the region of the secondary maximum but not enough to agree
with the data. Moreover, there i{s a serious pnroblem at more moderate
momentum transtfers which stems from the fact that the diffraction
minima occur at the wrong locations. In the model presented, the fit
to the Llow-q2 data is best without the inclusion ot a three-hody
force.

The ad hoc addition to elther torm ftactor of a component which
vanighes at q2=0 and is negative in the reglion of the diffraction
minimum and secondary maximum would alleviate the problems.Z4Y Such a
negative component would shift the form factor minimum and maximum to
smaller values of q2 and would increase the size of the torm tactor
maximum. This simple structural behaviour accounts tor the heipful-
neys of meson-exchange currents. However, we relterate that there 1is
no fundamental difterence between certain plion-exchange contributions
to the charge operator and the {inclusion of relativistic corrections
in the two-nucleon and three-nucleon Hamiltonians (aAH). The matrix
elements of the charge operator have a strength which can be dialed
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from the charge operator intoc the wave functions via AH in an arbitra-
ry manner. Those ad hoc calculations of these pion exchange current
corrections to the charge operator have heretofore had a negative sign
and appropriate scrength to alleviate some of the difficulties with
fitting the charge form factors.33 Therefore, it is imperative that
trinucleon calculations be performed which include relativistic
corrections. [One would preter a model calculation with the minimal
correct shysics which avoids the (v/c)? expansion.] Only in this way
will we be able to make a clear statement about relativiscic (and
therefore plon exchange current) effeccs and their role 1in the
trinucleon form factors.

RSC *He Charge Form Factor
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Fig. 16. The magnitude of the RSC JHe charge form factor in impulse
approximation for several three-hody force models plotted
veraus q2, together with rthe experimental data

What does all of this sav about the charge densities ot 'He

and 'H? We plot the point-nucleon impulse approximation charge den-
attiesd) {n Figs. 18 and 1Y. The 'He charge density has a maximum at



the origin when no three-body force is included. This is modified to
be a slight minimum (except for the TM model) when a three-body force
{s included. The size of this depression 1is mucn smaller than Sick
obtained when he Fourier transformed the 3HPe form factor data.3% This

RSC °H Charge Form Factor
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Fig. 17. The magnitude of the RSC 3H charge form factor in impulse
approximation for several three-body force models plotted
versus q¢, together with the experimental daca.

is a retlection of the smaller secondary maximum in the calculated
form factors. It i3 important to realize that the Fourier transform
of the experimental form factor is not necessarily properly interpre-
ted as a "charge denaity." Furthermore, the size of the hole corre-
sponds to less than !% of the total charge ot JHe, which is the order
of magnitude of relativistic corrections. The difference hetween the
TM curve near the origin and the other three-body tforce curves
reflects the form factur differemces at much larger vialues ot q? than
those shown.

The JH charge density has a small hole tor each model. This i1
caused by the L=2 (D-wave) component ot the wave function. ‘Tnis com-
poneont has a completely aymmetric spin-quartet (S=3/2) wave tunc-
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tion, Consequently, the two neutrons in the L=2 component of the
triton wave function must be in a relative odd-parity state (to
satisfy the Paull principle) as must be the remaining proton.
Theretore, the charge density contribution ftrom this wave tunction
component must vanish at the origin. There (s no similar restriction
in 3He, because there are two protons and singling out one of them
leaves the remaining neutron-proton palr {n any orbital statre.
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tion. Consequently, the two neutrons in the L=2 component of the
triton wave function must be In a relative odd-parity state (to
satisfy the Paull principle) as must he the remaining proton.
Theretore, the charge density contribution trom this wave tunction
component muat vanish at the origin. There is no similar restriction
in JHe, because there are two protons and singling out one ot them
leaves the remaining neutron-proton pair in any orbital scate.



Finally, although it 1is difficult to observe the effect in Fig. 18 and
19, the increased binding due to the inclusion of a three-body force
draws in the charge density toward the origin at large r. All curves
coriespond to a normalization of unity.

As a closing note, let us consider the relation between the
charge form factors and the Coulomb energy Egc due to the Coulomb force
acting between the two protons in 3He. Clearly, E- depends upon the
slze of 3He and therefore the hinding energy. Friar33 and Fabre de la
Ripe11e36 independently propused exploiting the hyperspherical approx-
imation, which leads to an estimate (Eg) for the Coulomb energy in
terms of the charge density (and therefore the charge form factor). If
one considers thec geometrical plcture depicted in Fig.10a, then for an
equilateral triangle corresponding to the dominant S-state component
of Y the distance x between the two protons is /3 r. Consequently,
for a smooth operator such as 1/x, one obtains as a reasonable
approximation

o EC ’ (26)
where
Ec =~ <Y IZ| v {27a)
and
H ] a ,
E = e Y =l Y > . (27b)

The idea is to replace the two-body correlation function (required to
calculate (¢ % > by the one-body charge density (needed to evaluate
< % > ). There is no a priorl reason that this must work. If % were
Instead §(x) and one tried to =-eplace it by &§(y), the approximation
would obviously fail badly, as < ¥ |§(x)| ¥ > = 0 whereas one can
see from Figs. 18 and 19 that < Y [§(y) |¥ > # 0. Nevertheless, we
have gshown by actual calculation that it works remarkably well for the
Coulomb energy.'’ This can be seen in Fig.20, where E; 1s plorted

versus Eg « The Eg approximation is less than 1% larger than Eg tor

all models. The difference arises because the correlation ftunction is
suppressed more than the charge density for small values of their
argument when there is short-range repulston.37

The approximation 1is quite useful because we have available
experimental charge form factor data which can be used to calculate
Eg. One ohtains3® 638 &+ 10 keV for the Coulomb energy ot JHe. (This
is smaller than the 650 keV one would obtain for Eg = 8.5 MeV in model

calculations, because the experimental form factors are of larger
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magnitude in the region of the secondary maximum where they are
negative.) The experimental binding energy difference between

JH and 3He is 764 keV. The fact that rhis hinding energy difference
is larger than the Coulomb energv {s a clear indication ot the
presence of charge symmetry breaking forces in the nuclear
Hamiltonian. That s, the neutron-neutron and proton-proton Strong
interactions are not identical. The known mixing of the p and w and
the »% and n would lead one cto predict at least a small charge
asymmetry {n the nucleon-nuclienn force. However, the size of the
effect seen here 13 not fully understood.

LECTURE LI. Two-Body Photodisintegration of the Triton
L. [ntroduction

The photon makes an ideal prohe ot the nucleus. The interdct.on
operator is reasonahly well .understrnod. Thus, one may ask questions
of the nuclear system independent ot the interaction mechanism. We
have ser) how the virtual photon of electron scattering can he used t-
studv tie charge density of the trinucleons. Let us now look at how



the real photon can be used to investigate the principal physics of
the A=3 continuum.

Before turning to that problem, I would like to enumerate a few
of the interesting aspects of low-energy photonuclear physics, lest
you thirk that trinucleon photodisintegration is the only story. It
was only a little more than 50 years ago that the first photonuclear
experiment took place:“l ZH + vy + n + p. The inverse of that
reaction (thermal capture of neutrons by hydrogen), with a cross
section (of 330 mb) some 10% larger than theoretical models could
account for, produced the first incontrovertible evidence for meson
exchange current effects in nuclei .42 The threshold n+d + 3H+y
reaction has a cross section (of 0.52 mb) some 600 times smaller.43
and meson exchange current effects are enhanced (to 50%) relative to
the standard nucleon current transition.%4 By exploring such
processes in which normally dominant reaction mechanisms are
suppressed, one can investigate details of nuclear physics which would
otherwise be difficult to see. Another example is the forward (0')
photodisintegration of deuterium.4> Because the normally dominant EI
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Fig. 21. Model calculations of the 2H(y,p)n reaction at 0" with and
without the relativistic spin-orhit contribution to the Kl
operator. The data are from Ret. 45.



transition from the L=0 component of the initial state to the L=l
partial wave of the final state vanishes in this geometry, one can
clearly observe noncentral force effects.40 In particular, the spin
orbit terms provide a 20% enhancement of do/d@ for 6=0 as can be seen
in Fig. 21. I will not have time to discuss the B85%-90% suppression
of the T=1/2 channel 1in the three-body photodisintegration
of 3H and 3He, compared to the T=3/2 channel.47-30 1t is, however,
intimately related by three-body unitarity to the two-body breakup
channel. Finally, one of the long standing puzzles in nuélear physics
is the deviation from 1 of the ratio of photoneutrons and phc:oprotons
from an alpha particle; 1i.e., experimentally one finds (see Fig. 22)

o(“He(y,p)3H|/o[*“He(y,n)3He| # 1

0 Py T T T T T
= “Hely, p)
18 -
|
I ‘_.h -
o8} —
Fig. 22. The “He(y,p)’H and

“He(y,n)3IHe cross section
10 ; — — T r evaluation (solid line); data
in (a) are from Ref. 51

for Ev < 30 MeV, In contradiction to that which one would expect on
the bhasis ot simple charge symmetry au'gument:s."2 The list goes ou.

In addition to the faet that ftew-hody photonuclear reactions
vield in.eresting physics, there ave purely theoretical reasons tor
Attempting to model tunese reactions.30 At low energy only a few
multipoles are important. That {s not to may that higher mulripoles



can necessarily be neglected, but they can be treated adequately in
Born approximation. As a consequence, large partial wave sums do not
hide the physics. One can methodically examine a reaction and come to
an understanding of the physics; e.g. the 0" photodisintegration of
deuterium. Because only a few multipoles and partial waves dominate
the prohlem, "exact" model calculations are not impossibly long.
Thus, photonuclear reactions are an appropriate field in which to
study the application of exact equation techniques in nuclear physics.

We shall examine below, as our example, the electric dipole (E1)
two-body photodisintegration of tritium:

3H+Y+n+d-

We employ a separable potential formalism and restrict our
consideration to central forces. This model has been investigated
thoroughly by Barbour and Phtlllps68 and independently by Gibson and
Lehman?3 using a description of the nd off-shell scattering that
resembles closely the formalism of Alt, Grassberger, and Sandhas.?%
The E2 contribution was shown to be negligible for photon energies of
less than 40 MeV by Barhour and Hendry.’? The physics points of
interest are (1) the cross section calculation does depend on whether
the 1i{nitial and final states are eigenfunctions of the same
Hamiltonian, (2) the full calculation is 50% larger than the plane-
wave Born approximation result at the peak of the 90° differential
cross section, and (3) the enhancement is due to using exact equations
which incorporate proper three-body unitarity and therefore couple the
two-body (nd) bhreakup channel to the T=1/2 three-body bhreakup (nnp)
channel.”?

I1. The E! operator

For those not familiar with photonuclear reactions, the matrix
elements of tLhe multipole series are known to go like EL - (kR) at
low energy, where k i3 the photon momentum (energy) Ln fm=! and R Is
the size ot the nuclear sysatem of {nterest. We have saen that the
trinucieon radiu, (s less than 2 fm. A photon of 20 MeV energy has
k = 0.1 fm-', Thus rthe ratlo of E2 ¢to E! matrix elements
ls ~ 0.1, and the F1 operator dominates the low-energpy
phorod{sintenration reaction.

Recall rhat the charge denalty operator relevant rto rhe
calculation of charge form factors (s of the form



p(xy) = es(k - k) g (1 + 1)) (28)

for a point charge. Meson exchange current contributions to the
charge density operator are (v/c)2 relativistic corrections. What do
we find for the E1 photodisintegration operator?

Formally, we wish to investigate the Hamiltonian

H H+H , (29)

Total

where H' is the interaction which will be treated perturbatively and H
is the nuclear Hamiltonian composed of kinetic energy and pair
interactions. That is, we assume

H = H, + V (30)

where the initial- and final-state eigenfunctions satisfy

H|Yi> - Et|Y1> (31a)
and

HIVE> - Ef|7E> . (31b)
The matrix element M{¢ which determines the transition

from ¥, to ¥, is then given by
Mig = Srg|H'[Y)> . (32)
The crnss section for the reaction is

- 2 N
o = | T | M df, (33
lE' te |

where % is the sum over final spin states and average over I(nitial
{

spin states and [df ls the required phase space Lntegral.

The transition matrix element involves the interaction of the
photon field cexp(ik.?),where ¢ {s the photon polarization and k irs
momentun vector (£.% = 0), with the nuclear current J. The current }
conslsts of a nucleon component and a meson exchange component:

(Yh)



The nucleon current has the expected form

(35)

That is, it is porportional to p/m, the velocity of the nucleon. Note
that it is of order (v/c), whereas the charge density is (v/c)° and
its exchange current corrections are (v/c)z. Unfortunately, meson
exchange current corrections to J are also of order (v/c¢) and cannot,
therefore, be neglected. However, it was pointed out by Siegerc56 in
the late 1930's that one can include the principal effects of meson
exchange currents in the long wave length limit (i.e. the low-energy
reglion in which we are interested) »y making use of the charge
continuity equation

§.3 - - %E o = -i[p,H]. (36)

Long wave length limit means to lowest order in k. In a nucleons-only
regime, where Jygc = O, the electric dipole current is

» 3
r

J~p/m = = {[r,H] . (37)

In that case, the transition matrix element bhecomes
Mig = 1| €.TEHI|Y D (18a)
= A(Ep - Bp) <yeleaefy> (18b)
Thus, the long wave length limit form of the electric dipole operator

ils e.r . The same result i{s achieved when the general current ) (s
used by writing

¢ em'E - l; ds [5 (€.F eLSR'E] - tyr x [k = Elelsk'il . (19)

The second term generates magnetic multipoles, so that we concentrate
on the first. Thus, we conaider

! » Lak.T
Mg = <vf|!0 ds 3 . f(c.r e My > . (H0)
Performing an integratlon by parts and utllizing the current
conservation relation to replace the #.J nperacion with the commutator

of a polnt nucleon charge density and H, we obtain



1 + T
Mg = i(Yfllfo ds e.r e 'H||'i> . (41)
Again, because the initial and final states are eigenftunctions of H,

we can evaluate the commutator and perform the [ds to obtain

M. = (E.-E) § (L)F<r 2.3 <“'E)L'1|w > (42)
L€ £ it gle-r —Tr—1%17 ¢
the leading term of which is
Mg = lo <y Jé.t]y,> , (43)

where w = Ef - Ei - |i|. Thus, the Siegert (long wave length) Llimict
nf the electric dipole operator which includes the meson exchange
current as well as the nucleon current (E/m) is €.r.

Let 1@ conclude this discussion by pointing out that there is an
additional reason for wusing the Siegert form of the transition
operator when one 1Is forced to use approximate solutions to the
nuclear Familtonian. Because the Siegert operator is related to the
charge density, we are able to enforce some physical {ntuition in
normalizing the bound-state spatial density; the normalization for
che current density of the nucleus 1is unknown. Furthermore, care
should he exercised to avold tne temptation to use the current form of
the operatoiv even when exact eigenstates of the nuclear Hamiltonlan
exlst, as thev do tor the separable potential model. The requirement
of gauge invariance Introduces a gauge transformation Iin all nonlocal,
momentum-dependent potentials when E.E ls used. 'This complexitly (see
Yamaguchid? for a discussion of 2H photodisintegration) is avoided by
use of the Siegert forms of the El and E2 operators e¢.t and

% (f.e)(k.T); the appropriate meson exchange currents are properly
fncluded.
IIl. Separable Potential Formallsm

The nuclear Hamiltonian (s assumed to be of the form given in
Fq.(10), when the potentlial operator lis

- : v, + + w s N

v in Va a3 ¥V vV (a4)
u-

The olpgenstates of H are assumed to be those corresponding to a three-

body bound atate, a scattering state comprised of a nucleon plus a

bound palr, and a scattering state ot three unbound nucreons. Tuus we



have

Hlvg> = -Eg|¥p> , Eg > 0 ; (45)
(z) () . p>_ _ :
Hlv s > = Egr’ a0 + Eap QE: €an * €an > 0 (46)
. (3) 3) . p? k2
HI Yok > Yanp > - e %n— il (47)

The reduced masses are mo- MG(MB + My)/z MG and u, = MBMY/(MB + MY),
where Ma is the mass of particle oa. For three equal mass nucleons,
these reduce to 2M/3 and M/2, respectively. The subscripts in Eq.(47)
mean that nucleon a moves relative to the center-of-mass of the pair
By with momentum ﬁ. while 8 and vy move relative to each other w!th
momentum k. The subscript n in Eqs.(46) and (47) denotes the remaining
quantum numbers such as spin and isospin.

We are concerned here only with two-body photodisintegration,
which is described by the transition amplitude matrix element

Ay(a.n By = <rlod >, (48)

where the superscript (-) denotes the outgoing state which corresponds
asymptotically to an incoming wave boundary condition. The two-bhody
scattering state is a solution of the equivalent equations
(n)O;E-pz/?_mu-e )

an
(- - N - ) - (-
l'un% > 1anp > = Gy(E 1“)B§GVsl'un% > (49)
and
(" - - O - »
lvan% > 10qnp > - GCE 1n)azuv8|¢unp >, (50)

with the resolvent operators defined as

G (2) = [Hy+V o - z] (51)

and
G(z) = |H-z|" . (52)

The "unﬁ > denotes the asymptotlic scattering state comprised ot a

nucleon a moving freely with respect to the 8y bound palr. [t KEq.(50)



is written in terms of the distortion operator

(=) = 8 (E<in) = 1 - G(E-in) § V (53)
a e Bga 8
and substituted into Eq.(48), we ohtain
- NTLSITL
A2 (a,n,P) <°unp'“a H' |¥g> , (54)

where n§+) - [ﬁg'))+ . The crux of this operator manipulation is
that a Faddeev-like equation can be written tor Q§+)

el o @t . 1 - T v, G(E+in) = G (E+in)G(E+in) (55a)
a a 8ta A a
-1
A1 - v.G.G:'G (55b)
_Za 8C8C8
= 1 -7 v.al? (55¢)
B#a 8878

Equation (55¢) can then be reexpressed in terms of the two-body t-
matrix operator as

3
(+) B (+)
a, 1 BZ‘ zaaTsGo“a . (56)
because
Ts(z) GO(Z) - VBGB(Z) , (57
where 308 -} - 6ua and Go(z) - (H()-z)'I . [f one then 1iteratces

Fq.(56) to obtain

4 o P I B
ni’) - - f 8§ T + '

L TasTulo [oaGpd

GQB,B () BYT G - + L) (’)8)

B;l yal y ()

and regroups bL2rms as

(H'W)

niﬁ) S ? (%

A - f 6 TG6 +-lll)'r(;
\ll Y

ay T g4 "as 8708y 0

then it (8 possilble to recognize the expression In parenthesls in
Eq.(59) as Ga' qu , where qu ls the transition operator that

connects particle-plus-correlated-palr states, Therefore, one can
write

n(+) LI 3 u"x T G (H0)
a ay v



where

X,g(2) = Go(z)z’mB - g qu(z)Ty(z)xYBco(z) (61a)

X,g(2) = GO(Z)EQB - Gy(2) E KGYTY(Z)X'd(z) . (61b)
The three-body dynamics of the continuum state now reside in the
transition operator qu . The two-body photodisintegration amplitude
can be written as '

AZ(a,n,p) = <&+ |H'|Y

- YZI <o aup IGO (2)X, (z)TY(z)Go(z)H'IYB> , (62)
where z = p2/2ma - €.n * in, and the cthree-body dynamics and the
photodisintegration operator have been separated.

The application of Eq.(62) to the photodisintegration of JH
requires knowledge of bhoth Tu(z) and H'. For this illustration, we
assume that Ta(z) results from an attractive, central-force, spin-
dependent interaction?’

A
] - - n ] "
vo(k,k") 7 8a(K)g (k) (63)
where the A, Are the strengths of the interactions and
(k) = <k|g >

are the momentum dependent form factors which determine the ranges ot
the (nteractions. This separable form of the nucleon-nucleon
interaction can support a hound state, and we will assume that the
spin-triplet (t) potential doea but that the spiln-singlet (1)
potential does not. The deuteron bound-state wave function is

el = Ny < l6§8 (e ) L e 0, (ht)

where Ny Ls the normallzation constant chosen so that plxp> =1 and
(())(7) ls the free-particle resolvent for two nucleons lln contriast

to Go(z) which 18 the tree-particle resolvent ftor three nucleons|. In
this picture we have



t
T, (2) = = [ |8 0%n(2)<g ol (}STX<SI])

N=3
where
A A g2 (k) 1
T (2) = e (1t [k )T, (66)
an W: ’ZF: z - k2/2uu

The upper. case S(I) denote the total spin (isospin) wave functions for
three nucleons. (See Appendix B for details.) Our asymptotiec
continuum state becomes

»> 2
@ind | = Ny <ggq PIGy ( qu " €an ) (67)
with <g__ B| = <g,,|<P|. and we can write Eq.(62) as

A2(a,n,p) = N, (<g, BICy(2)H"|¥p>

3 ot N - 12
' 521 nz s [dip* <gyq PIXyg(2) |8gnt P'> Tgpnel 2 - Eﬁ; ) (o9

x <8t P'[Go(2IH |¥g> }

where we have suppressed the spin-isospin projection operator in the
second term of the expression and used the identity
[dip'|p'><p'| = 1.,

For three identical nucleons, one musr symmetrize the amplitude:

My(z,p) = //; u% Ay(a,n,p) . (69)

The resulting symmetrized expression can be written as

n »
My(z,p) = B_(z,P) (10)
t > 'J ' 2 »,
+ .{ [dip! plXgpr (22 |P'D> 1. (z - -%H—) B (z,p")
n'=s

where 2 = Jp?/4M - rq v In and the deuteron binding enerry
€y y¢/M = 2,225 MeV. The amplitudes appearing in Eq.(/0)), written
in off-shell form (z not equal to 3p?/4M - ¢, + in and || not che



same as |p'|), are

. T 3 > ,
Bn(z,p) - N, /[ a§1 (ganp|Go(z)H |YB> (71)
and
. . y 33 . .
<P|xnn'(z)|P'> -3 Il le <g°np|xa8(z)|88n' P> (72)
G- -

The off-shell three-particle transition amplitude <B|xnn|(z)|5'>
satisfies the integral equation

BlX g (2B = BlZy ()]

(73)
€ + > "2 + »
+ 1 [d¥p" <pIX (2 P"> T (z - lF,ﬁ;l——)q:"lz,,m.(z)|p'> :
m=s
where
+> > 1 3 3 ~ *> »
PlZyqr (D) |BP'> = = z‘ le 8.8 (ganp|GC(z)|an.p'> . (74)

The calculational method to be used to obtain the two-body
disintegration matrix element s now clear on the basis of Eqs.(70)
and (73). For those whe prefer a graphical representation, a vivid
description is given in Fig.23. The X ,' amplitudes are obtained by
solving the coupled integral equations driven by the one-nucleon
exchange term Zp .t. The matrix describing the two-body photodis-
{ntegration is obtained as an integral relation involving these off-
shell amplitudes and the Born terms for the disintegration process.
It should be noted that one can treat any weak process by this method,
since the perturbative operator H' has not yet heen specified.

Taking for our ansatz the electric dipole operator, we have

' - l > »
H 7 ez:-tl th (75)

where ry 4are the nucleon center-of-mass coordinates and Tz ls the =z-
component Lsospin Paull operator for nucleon i. We include on.y the
dominant $-state component of the triton ground state for this example
(see Appendix B):

lvg> = ud (76)

a ’
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Fig. 23. A graphical representation of the equations used to-
generate the two-body photodisintegration transition amplitude.
The wavy line represents the photon, the double line (n) the
deuteron, and N is a neutron in the case of 3H photodisinte-
gration. The cross-hatched double line indicates that a partic-
ular correlated pair plus nuleon are off shell.

where the bar in 58 denotes JH instead of JHe. Acting with the

operator H' on ¥, , we ohtain

B
H'jw,> = <& & . | 2 %45 +%3.) uk,p . (77
" 2771 /3l !

The final-state spin-isospin projection in Eq.(71) involves only xlﬁz
and, hecause the deuteron wave function is S-wave, we get

eMN. () [£.7 u(k,p) |
» 2 Id3k gt P

B (z,p) = (78)
et %P a3 3p2 /4 + k2 - Mz

where y = -tﬁp . In the model in which we are working, the electric-
dipole operator connects the 233/2 ground state to the Zl-’”2
continuum sgtate,

Let us specialize the equations to a calculable form by making
partial-wave decompositions:

B (z.0) = E.pH (2,p) ., (79a)
BlXgqe B> = § 2Le)) XL (p.p'i2) PL(P-D') . (79b)
B2 B> = [ (2Le1) 25, (p.p'iz) PL(p.p') . (79¢)

L

where PL(coso) is the Legendre function for angular momentum L. Atter
t

some algebra, we obtain for M2

the exprassion



M3(z,p) = €.p (F (z.p)

t = et 2

+ 4w ] { P'zdP'X;n(P.P':z)tn(z - éﬁn—)cﬁfn(z,p')} (80a)
N=g

: &.pMi(z.p) . (80b)

The dg;(z,p) in Eq.(80) can be obtained in the same manner asc§1(z.p)
using the projection x%ﬁ1 ; the result is the same except that gg(k)
replaces B (k). The xtt and Xls amplitudes are generated by solving
the coupled integral equations

1 LI - ] ‘.
Xan' (P4P"i2) Zon'(PuP'32)  +

t - Im 112
wn T [ eradprzl, (et pmidr (2 - B (pipmia) (81)
meg

where the driving terms are given by

1 Pi(x)8,(q%)gy:(q'2)

Zan: (PrP'i2) = Coqu [ dx T T (82)
with the coordinate definitions
q¢ = z';pz +p'? +pp'x , (83a)
q'2 = p? + 7‘; p'2 + pp'x , (43b)
x = p.p'/pp' . (83c)
Note that we made use of the relation
Zhn.(p.p';z) - Zg.n(p'.p;z) . (84)
The spin-isospin coefficient matzix is
c c 1 _ 3
(Caqe! = [C:E c::] - : T : (35)
-5 4

Once Mg(z.ﬁ) is obtained, the differential cross section is



constructed in the standard way:

2 2 2
do = 2x2 EY|;;'2: (%ﬁ- - ﬁ- . P)|° sin2e o , (86)

where EY is the photon energy (-|E|), p is che centre-of-mfss angle of
the ejected nucleon with respect to the photon direction k, and g ls
the density of final states.

To summarize, we must solve the coupled integral equations given
in Eq.(81) for the X amplitudes. The inhomogeneous terms for these
equations are defined by Eq.(82). The resulting xlt and Xls mustc be
combined with the Born amplitudes defined by Eq. (78) and (79a) as in-
dicated in Eqs (80) to obtain.ﬂg which is required by the cross sec-

tion expression in Eq.(86).

Iv. Numerical Methods

How are these equations solved in practice. One method?3 is to
solve ihe coupled integral equations, Eq. (81), for the half-off-shell
nucleon-plus-correlated-pair X amplitudes using standard contour rota-
tion techniques. The wvariables p' and p" are rotated from the real
axis into the fourth quadranc: p' » p' el® and p" +» p" e i¢, The

rotation angle ¢ is limited by the singularity in the inhomogeneous

!

v 3p2
nn'(p’p '

2
term, 2 - ﬁ—] , coming from the energy denominator

pZ + p'?2 + pp'x - MZ = 0. To avoid this singularity, the rotation
angle must be chosen such that

¢ ¢ tan” (?-) : (87)
In practice this places a stringent limit on the energy for which
contour rotation can be used to solve the separable potential
equations.

Having obtained the amplitudes xln.(p.p'e'l°;3p2/4M-72/M). the
amplitude M;(JpZ/AM - v2/M,p) tis computed by rotating the p' integra-
tion in the second term on the right-hand-side of Eq. (79a). This is

helpful because the Lound-state pole o~ ._ Ls avolded. However, this

totation is possible only (f no utngularlites of Ty OF ‘n fnterfere.
[t 1s easy to show that this is the case for LI that fact was used
in solving Eq. (81). However, the‘fn are more complicated. VUsing the
fact that the spectator function, i.e. the integral equation generated

component of the bound state wave function to be discussed helow, can



be fitted very accurately with analytic forms ot the type
u(p) = (1 +ap? + Bp* + 7ps + ¥p&)”! (88)

one nan break.ﬁ% into a sum of two types of terms: those that require
only a single k integration (k = |k|) and those that require both a k
integration and an amnjular integration. Assuming p' ~» p'e'io , we
found that if the k integration in those terms that do not involve the
angular integration are rotated 45° (k » ke'i'la), then no singulari-
ties are encountered. Singularities in the angular-integration terms
are avoided by rotating k the same as p', i.e., k + ke'io. Through-
out, it is assumed that for the p' rotation there is no contribution
from the circular arc at intinity. For the 1integral in Eq. (79a),
this can be shown to be true.

The Faddeev amplicude v, which makes up the S-state component ot

the wave function has the simple form

by = Ny (g (u (p) - g (u (p)1/(k? + 3 p2 + MEp) (89)

where the u,(p) are the singlet and triplet spectator functions
obtained by means of a homogeneous set of coupled integral equations??
analogous in form +“o Eq.(81). These bound-state ocquations are well
known. However, 1in crder to conveniently evaluate V ¥ as required in
the Born terms of Eq.(78), the spectator functions were fitted to the
analytic form given in Eq.(88). Barbour and l"hi.llips“8 chose another
method for this part of the calculation. Instead of solving for the
bound-state wave function using the Hamiltonian that generated the
continuum wave funcrion, they assumed a form like that generated by S-
wave separable interactions, set the binding energy to the experi-
mental value, and used the rms radius to fix the remaining parameter
defining the spectator function. Such a phenomenological approach
overemphasizes the asymptotic region. When combined with the E! op-
erator, this leads to a significant overestimate of the cross section
near the peak. We shall return to this point in the next section.

V. Sample Numerical Results

The most important feature of the two-body photodisintegration
cross section is the enhancement in the peak remion of the full cal-
culation over the plane wave Born approximation (PWBA), as shown in
the 90° differential cross sections in Fig.24. The peak cross section
for the full calculation is 40-50% larger. This type of eftect was
first reported in Ref. 48. However, the fascinating reason for this



enhancement was not clear until the publication of Ref. 53. There it
was shown that the on-shell distorted wave Born approximation result
(DWBA) was actually smaller than the PWBA. On-shell neutron-deuteron
final-state rescattering reduces the cross section ~10%, not increases
it. Furthermore, retaining the off-shell rescattering in the triplet
neutron-deuteron amplitude does not account for the large enhance-
ment. The enhancement in the fuli amplitude comes from the off-shell
scattering in the singlet correlated-pair-plus-nucleon intermediate
state that leads to an on-shell neutron-plus-deuteron final state.

(uab/ 3r)

do/d0N

A "
L} L} ] 1} a n » oo

n
E, (MeV)

Fig. 24. Comparison ot the 3H(y,d)n 90° differ-
ential cross section calculted with the complete
solution of the separable potential equation
(solid curve) with the plane wave Born approxima-
tion for the same model.

That is, the enhancement comes ftrom an N+d* rescattering which takes
the d* to a physical d. The two-body hreakup channel {s absorbing
strength from the three-body breakup channel. This is possible only
In 2 formalism that properly includes three-hody unitarity. The two-
body and T=1/2 three-body breakup channels are not independent. Thelr
Intimate connection cannot he lgnored. Exact equation approaches were
needed to understand the physics.

Data for the 3H(y,n)d reaction total cross section are ghown
Fig.25. In the electric dipole approximation, the total cross section
ils Ar/3 times the 90° differential cross section. Thus the model cal-
culations are qualitatively corvrect, which {8 all one can hope for in
the simple model we have constriucted. ‘The comparison of the model
with the data is better seen in a study of 3He(y,p)d shown in
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Fig. 25. The total cross section for the 3H(y,n)d
reaction as reported in Ref. 60.

Fig. 26. Here the solid curve gives quite a reasonable representation
of the data. The dashed curve is a calculation performed within the
context of this model but using the Ref. 48 prescription for
constructing a phenomenolorical ground-state wave function. Recall
that the correct analytic form was used; the binding energy was

1 v T =Y T — T
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Flg. 26. Comparison of selected JHe(y,d)p 90
differential cross sectlon data (Ref.h!) with the
calculations of Ref.5) (solid curve) and Ref. 48.



determining the spectator function was fitted to the rms radius. On
the basis of such a curve, Barbour and Phillips concluded that the
photodisintegratinn data were incompatible with the rm8 radius
of 3He. A better conclusion from Fig.26 18 that one should use
ground-state and continuum wave functions generated by the same
Hamiltonian. Approximations in physics can be tricky and are often
difficult to justify a priori.

In summary, we have examined a very simple model calculation of
the two-hody photodisintegration of *H but one which encompasses much
of the important physics. We have seen how to produce a calculation
from an abstract cheory. Finally, we have examined the solution to
part of what was once a real puzzle in photonuclear phvsics:“7-50 Why
wag the two-body cross section so large (compared to the three-hody
cross section)?
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Appendix A. Jacobi Coordinates

The centre-of-mass .Jacobl coordinates In contlguration space are
defined by
> » [
X, = r’ - T (Ala)
and
*

v, - -} (I-, R - B (Alh)
The ry are the coordinates of nucleon {, and the subscripts are to he
taken cvclically. We will choose the palr (xy,y;) shown in Fig.Al to
he the coordinates (x,y) with which we detine our wave functions and
amplitudes. The other two pairs can then he expressed In terms ot X
and y hy the relations

X2

- % X +y (A7) 1)



Appendix B. Spln-lsospin kormallsm

The doublet spin states for three nucleons have the form

Xy, = l[‘.z]-z) (Bla)
= () (ed) -2 (e ] (B1b)

/%
x = 110,31 9> (Blc)
R S IO (B1d)

/'l

Here a + (or -) means that the nucleon corresponding to that position
has spin up (or down). Similarly, the ilsospin functions " and n, can
be defined to “ave the forms in Eqs.(B1) where a + (or -) means that
the nucleon is A proton (or neutron); such functions describe }He and
JH functions are obtained by interchanging + and - in the n's.

The spin-isospin basis states are 1linear combinations of
these x's and n's. The combinations which we require are

|

® = — (xyny) = Xpn,) (B2a)
1 .
6, = — (xynp = XyN,y) (B2b)
1 .
¢ = — (xogn, *+ xyn (B2c)
2 7 (xam toxing)

The function ¢, is fully antisymmetric under the interchange of any
twn nucleons, while 9, and ¢4y have the gsame mixed symmetry properties
W8 do the x's and n's.

The Pauli principle requirec that the overall wave function be
fully antisymmetric in the interchange of all coordinates of any palr
of nucleons. The function 4, u gatisfles this requirement, where u i3
spatially symmetric. This is the 2§ 1, component of v. which s
denoted by S, Comhinations of ¢, and L) with snatial functions of
mixed symmetry that describe the trinucleons muat also possess the
LA antlsymmetry property. There is one: ¢, Vg = ¥y V| This is the
2g 1 state of mixed symmetry which {3 denoted by S'. The full wave
function {a rhen of the form

Y o= 4 u 4 (o' vy = 4y v‘) . (83)



Appendix C. Exchange Currents

Over 10 years ago plon-exchange current contributions to the
charge density operator were calculated and then later applied in the
case of 3He. (See Ref.33.) Effects were found which were of the
right siegn and of sufficient magnitude to resolve the disagreement
between theorvy and experiment concerning the size and shape of the
charge form factor. Friar.13 however, showed about the same time that
these corrections to the charge density operator (1) are relativistic
corrections f[i.e., (v/c)? compared to 1], (2) contain important
momentum-dependen= terms which have never heen included in 3He
calculations, (3) are model dependent, reflecting the physical
difference between pseudoscalar and pseudovector couplings of pions

and nucleons.39

and (4) are ambiguous, reflecting a unitary ambiguity
which arises in different methods of calculating these operators.

The fact that these isoscalar exchange currents are of relati-
vistic origin means that one must do a relativistic calculation
(including refitting the nucleon-nucleon interactions to the two-body
data) to include them in a meaningful wave. The pseudoscalar versus
pseudovector coupling model dependence is unavoidable. The unitary
ambiguity is vexing because it would vanish if the wave functions
calculated with a given potential were used with a commensurate form
of the charge operator - such matrix elements could be free of any
ambiguity. But realistic potentials to date have the wrong form to
correspond to any of the allowed unitary representations of the charge
density operator.

Exchange currents of the Lsovector 1{lk are not relativisctic
corrections compared to the nuclear current, B/M. They contribute in
a non-negligible manner to the magnetic density form factors of the
trinucleons. Friar has discussed these in great detail.'3 See also
the exchange current references {n the magnetic moment {nvestigation
of Ref.40.
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